基于高斯混合模型的飞机进近着陆阶段运行异常检测Abnormal operation detection for approach and landing phase based on Gaussian mixture model
孙瑞山;陈雄;梁妍;
摘要(Abstract):
为检测与分析飞机进近着陆阶段可能引发安全风险的运行异常现象,基于高斯混合模型提出了一种进近着陆阶段飞机运行异常检测方法。首先,将进近着陆阶段飞行数据输入期望最大算法构建高斯混合模型,研究各高斯分量随时间的变化特性,结合所输入的数据在各高斯分量概率密度函数中的计算结果,识别进近着陆阶段存在的飞行数据异常航段。然后,通过复核数据异常航段的原始飞行数据,检测与分析飞机进近着陆阶段可能引发安全风险的运行异常现象。最后,利用该方法检测与分析了462个实际运行航段中进近着陆阶段的运行异常。结果表明:当文中模型对应的BIC数值最小时,高斯分量个数为21,其中有11个高斯分量的从属度在接地后迅速衰减至0;在划定3个不同的检测阈值后,分别识别出27、15、8个飞行数据异常航段,最终通过复核检测出3个进近着陆阶段的运行异常现象。
关键词(KeyWords): 安全社会工程;飞行安全;进近着陆阶段;高斯混合模型;异常检测
基金项目(Foundation):
作者(Authors): 孙瑞山;陈雄;梁妍;
DOI: 10.13637/j.issn.1009-6094.2021.0198
参考文献(References):
- [1] 彭宇,何永福,王少军,等.飞行数据异常检测技术综述[J].仪器仪表学报,2019,40(3):1-13.PENG Y,HE Y F,WANG S J,et al.Flight data anomaly detection:a survey[J].Chinese Journal of Scientific Instrument,2019,40(3):1-13.
- [2] 中国民用航空局飞行标准司.飞行品质监控(FOQA)实施与管理:AC-121/135-FS-2012-45R1[S].北京:中国民航局,2015:21-25.Flight Standards Department of Civil Aviation Administration ofChina.The implementation and management of flight operational quality assurance (FOQA):AC-121/135-FS-2012-45R1[S].Beijing:Civil Aviation Administration of China,2015:21-25.
- [3] OEHLING J,BARRY D J.Using machine learning methods in airline flight data monitoring to generate new operational safety knowledge from existing data[J].Safety Science,2019,114:89-104.
- [4] MELNYK I,BANERJEE A,MATTHEWS B,et al.Semi-markov switching vector autoregressive model-based anomaly detection in aviation systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference.New York:Association for Computing Machinery,2016:1065-1074.
- [5] KHALASTCHI E,KALECH M,KAMINKA G A,et al.Online data-driven anomaly detection in autonomous robots[J].Knowledge and Information Systems,2015,43(3):657-688.
- [6] 费思邈,霍琳,王亮,等.基于聚类分析的飞行数据异常检测方法[C]//2015航空试验测试技术学术交流会论文集.北京:中国航空学会,2015:277-279,302.FEI S M,HUO L,WANG L,et al.Anormaly detection method of flight data based on clustering analysis[C]//Proceedings of 2015 Academic Conference on Aviation Test Technology.Beijing:Chinese Society of Aeronautics and Astronautics,2015:277-279,302.
- [7] 何永福,王少军,王文娟,等.基于过采样投影近似基追踪的无人机异常检测[J].仪器仪表学报,2016,37(7):1468-1476.HE Y F,WANG S J,WANG W J,et al.UAV anomaly detection based on oversampling projection approximation basis pursuit[J].Chinese Journal of Scientific Instrument,2016,37(7):1468-1476.
- [8] 周德新,刘宸宇,牛亚月.关于飞行发动机数据异常实时检测仿真研究[J].计算机仿真,2016,33(9):118-122.ZHOU D X,LIU C Y,NIU Y Y.Simulation research about flight engine data anomaly detection in real time[J].Computer Simulation,2016,33(9):118-122.
- [9] 周志华.机器学习[M].北京:清华大学出版社,2016:206-211.ZHOU Z H.Machine learning[M].Beijing:Qsinghua University Press,2016:206-211.
- [10] DAEMI A,KODAMANA H,HUANG B.Gaussian process modelling with gaussian mixture likelihood[J].Journal of Process Control,2019,81:209-220.
- [11] 朱婷,赵来军,王旭磊.基于贝叶斯网络的危险化学品道路运输事故分析[J].安全与环境学报,2016,16(2):53-60.ZHU T,ZHAO L J,WANG X L.Analysis of the hazardous material transportation accidents based on the Bayesian network method[J].Journal of Safety and Environment,2016,16(2):53-60.
- [12] 王爱平,张功营,刘方.EM算法研究与应用[J].计算机技术与发展,2009,19(9):108-110.WANG A P,ZHANG G Y,LIU F.Research and application of EM algorithm[J].Computer Technology and Development,2009,19(9):108-110.
- [13] LUCKE J,FORSTER D.K-means as a vriational EM approximation of Gaussian mixture models[J].Pattern Recognition Letters,2019,125:349-356.
- [14] 刘通,付锐,张名芳,等.融合K-means与高斯混合模型的驾驶风格聚类研究[J].中国安全科学学报,2019,29(12):40-45.LIU T,FU R,ZHANG M F,et al.Study on driving style clustering based on K-means and Gaussian mixture model[J].China Safety Science Journal,2019,29(12):40-45.
- [15] The Boeing Company.B737 flight crew operations manual[M].Chicago:The Boeing Company,2009.