真空紫外光催化降解水中双酚A及其机理研究Study on photocatalytic degradation of Bisphenol A (BPA) in water and its mechanism by vacuum ultraviolet light
王媛;兰豪;刘宗豪;李晓蕊;张瑞雪;黄家琰;
摘要(Abstract):
采用溶胶凝胶法制备二氧化钛(TiO_2)薄膜光催化剂,比较不同初始质量浓度双酚A(BPA)在185 nm真空紫外光(VUV)下的降解和光催化降解。在此基础上,主要考察溶液初始pH值和水中常见阴离子对BPA真空紫外光催化降解的影响;通过自由基淬灭试验和对降解产物的分析推断可能的降解机理。结果表明,与VUV下BPA的降解相比,真空紫外光催化能显著促进高质量浓度BPA的降解。当初始质量浓度为100 mg/L时,BPA的真空紫外光催化降解速率常数是其在VUV下降解数率常数的1.65倍,其中光催化降解的贡献值可达39.4%。降解反应遵循准一级反应动力学规律。溶液初始pH值为6.19时,BPA降解最为迅速,pH值为3.54时次之,而pH值为9.30时降解最为缓慢。阴离子存在下,真空紫外光催化降解反应的准一级反应速率常数的变化趋势由大到小为k(NO_3-)、k(CO_3-)、k(CO_3(2-))、k(Cl(2-))、k(Cl-)、k(SO_4-)、k(SO_4(2-))、k(无)。羟基自由(·OH)是诱发BPA降解的主要活性物种,它与VUV一起作用于BPA分子,使其发生β断裂,进而得到降解。循环试验表明制备的TiO_2薄膜具有较好的稳定性和潜在的适用性。
关键词(KeyWords): 环境工程学;TiO_2薄膜;双酚A;真空紫外光;光催化降解;降解途径
基金项目(Foundation): 贵州省留学人员科技活动择优资助项目((2018)0010)
作者(Authors): 王媛;兰豪;刘宗豪;李晓蕊;张瑞雪;黄家琰;
DOI: 10.13637/j.issn.1009-6094.2021.0225
参考文献(References):
- [1] 李楠,范添博,田义军等.环境雌激素双酚A的研究进展[J].现代生物医学进展,2015,15(7):1353-1356.LI N,FAN T B,TIAN Y J,et al.The research progress of environmental estrogen Bisphenol A[J].Progess in Modern Biomedicine,2015,15(7):1353-1356.
- [2] GONSIOROSKI A,MOURIKES V E,FLAWS J A.Endocrine disruptors in water and their effects on the reproductive system [J].International Journal of Molecular Sciences,2020,21(6):1929.
- [3] VANDENBERG L N,EHRLICH S,BELCHER S M,et al.Low dose effects of bisphenol A:an integrated review of vitro,laboratory animal,and epidemiology studies[J].Endocrine Disruptors,2013,1(1):e25078.
- [4] HU Y,ZHU Q Q,YAN X T,et al.Occurrence,fate and risk assessment of BPA and its substituents in wastewater treatment plant:a review[J].Environmental Research,2019,178:108732.
- [5] ZHANG C,LI Y,WANG C,et al.Occurrence of endocrine disrupting compounds in aqueous environment and their bacterial degradation:a review[J].Critical Reviews in Environmental Science and Technology,2016,46(1):1-59.
- [6] HUANG Y Q,WONG C K C,ZHENG J S,et al.Bisphenol A (BPA) in China:a review of sources,environmental levels,and potential human health impacts[J].Environment International,2012,42:91-99.
- [7] FAGAN R,MCCORMACK D E,DIONYSIOU D D,et al.A review of solar and visible light active TiO2 photocatalysis for treating bacteria,cyanotoxins and contaminants of emerging concern[J].Materials Science in Semiconductor Processing,2016,42(SI):2-14.
- [8] REDDY P V L,KIM K H,KAVITHA B,et al.Photocatalytic degradation of bisphenol A in aqueous media:a review[J].Journal of Environmental Management,2018,213:189-205.
- [9] ZOSCHKE K,B?RNICK H,WORCH E.Vacuum-UV radiation at 185 nm in water treatment—a review[J].Water Research,2014,52:131-145.
- [10] XIE P C,YUE S Y,DING J Q,et al.Degradation of organic pollutants by Vacuum-Ultraviolet (VUV):kinetic model and efficiency[J].Water Research,2018,133:69-78.
- [11] MOUSSAVI G,POURAKBA M,SHEKOOHIYAN S,et al.The photochemical decomposition and detoxification of bisphenol A in the VUV/H2O2 process:degradation,mineralization,and cytotoxicity[J].Chemical Engineering Journal,2018,331:755-764.
- [12] 李晓蕊,王媛,雷瑶.真空紫外光化学降解双酚A的影响因素研究[J].水处理技术,2018,44(12):51-55.LI X R,WANG Y,LEI Y.Study on influencing factors of photochemical degradation of bisphenol A under the irradiation of vacuum ultraviolet[J].Technology of Water Treatment,2018,44(12):51-55.
- [13] HUANG H B,DENNIS Y C L,PHILIP C W,et al.Enhanced photocatalytic degradation of methylene blue under vacuum ultraviolet irradiation[J].Catalysis Today,2013,201:189-194.
- [14] MATSUSHITA T,HIRAI S,ISHIKAWA T,et al.Decomposition of 1,4-dioxane by vacuum ultraviolet irradiation:study of economic feasibility and by-product formation[J].Process Safety and Environmental Protection,2015,94:528-541.
- [15] NDONG L B B,IBONDOU M P,GU X G,et al.Efficiently synthetic TiO2 nano-sheets for PCE,TCE,and TCA degradations in aqueous phase under VUV irradiation[J].Water Air and Soil Pollution,2014,225(5):1951-1959.
- [16] 韩文亚,张彭义,祝万鹏,等.水中微量消毒副产物的光催化降解[J].环境科学,2005,26(3),92-95.HAN W Y,ZANG P Y,ZHU W P,et al.Photocatalytic degradation of DBPs in aqueous solution[J].Environmental Science,2005,26(3):92-95.
- [17] YANG L,XU L,BAI X,et al.Enhanced visible-light activation of persulfate by Ti3+ self-doped TiO2/graphene nanocomposite for the rapid and efficient degradation of micropollutants in water[J].Journal of Hazardous Materials,2019,365:107-117.
- [18] JIA C Z,WANG Y X,ZHANG C X,et al.Photocatalytic degradation of bisphenol a in aqueous suspensions of titanium dioxide[J].Environmental Engineering Science,2012,29(7):630-637.
- [19] LIN C C,LIN H Y,HSU L J.Degradation of ofloxacin using UV/H2O2 process in a large photoreactor[J].Separation and Purification Technology,2016,168:57-61.
- [20] ANIPSITAKIS G P,DIONYSIOU D D.Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt[J].Environmental Science & Technology,2003,37(20):4790-4797.
- [21] NAKATANI N,HASHIMOTO N,SHINDO H,et al.Determination of photoformation rates and scavenging rate constants of hydroxyl radicals in natural waters using an automatic light irradiation and injection system[J].Analytica Chimica Acta,2007,581:260-267.
- [22] SARA G,JOSEPH R.Mechanism of nitrite formation by nitrate photolysis in aqueous solutions:the role of peroxynitrite,nitrogen dioxide,and hydroxyl radical[J].Journal of the American Chemical Society,2007,129(34):10597-10601.
- [23] TORRES R A,PE'TRIER C,COMBET E,et al.Ultrasonic cavitation applied to the treatment of bisphenol A.Effect of sonochemical parameters and analysis of BPA by-products[J].Ultrasonics Sonochemistry,2008,15:605-611.
- [24] DING Y B,ZHOU P,TANG H Q.Visible-light photocatalytic degradation of bisphenol A on NaBiO3 nanosheets in a wide pH range:a synergistic effect between photocatalytic oxidation and chemical oxidation[J].Chemical Engineering Journal,2016,291:149-160.
- [25] 李红娜,郭萍,汪煜,等.紫外降解双酚A的因素敏感性分析及机理探讨[J].环境科学与技术,2017,40(6):1-6.LI H N,GUO P,WANG Y,et al.Factor sensitivity analysis and mechanisms inveatigation of bisphenol A photodegradation in water by UV irradiation[J].Environmental Science & Technology,2017,40(6):1-6.
- [26] 兰豪,王媛,黄家琰.水中双酚A的光化学降解研究进展[J].工业水处理,2020,40(9):12-18.LAN H,WANG Y,HUANG J Y.Recent advances in photochemical degradation of bisphenol A in water[J].Industrial Water Treatment,2020,40(9):12-18.
- [27] FUJISHIMA A,RAO T N,TRYK D A.Titanium dioxide photocatalysis[J].Chemical Reviews,2000,1(1):1-21.
- [28] BUXTON G V,GREENSTOCK C L,HELMAN W P,et al.Critical review of rate constants for reactions of hydrated electrons,hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution[J].Journal of Physical & Chemical Reference Data,1988,17(2):513-886.
- [29] CHANG C,ZHU L,FU Y,et al.Highly active Bi/BiOI composite synthesized by one-step reaction and its capacity to degrade bisphenol A under simulated solar light irradiation[J].Chemical Engineering Journal,2013,233:305-314.
- [30] YANG L X,LI Z Y,JIANG H M,et al.Photoelectrocatalytic oxidation of bisphenol A over mesh of TiO2/graphene/Cu2O[J].Applied Catalysis B:Environmental,2016,183:75-85.
- [31] SANCHE-POLO M,DAIEM M M A,OCAMPO-PERZ R,et al.Comparative study of the photodegradation of bisphenol A by ·OH,SO■ and CO■/HCO3 radicals in aqueous phase[J].Science of the Total Environment,2013,463:423-431.
- [32] ZHANG Y N,QIN N,LI J Y,et al.Facet exposure-dependent photoelectrocatalytic oxidation kinetics of bisphenol A on nanocrystalline {001} TiO2/carbon aerogel electrode[J].Applied Catalysis B:Environment,2017,216:30-40.
- [33] MURUGANANTHAN M,YOSHIHARA S,RAKUMA T,et al.Mineralization of bisphenol A (BPA) by anodic oxidation with boron-doped diamond (BDD) electrode[J].Journal of Hazardous Materials,2008,154:213-220.