氢安全研究现状及面临的挑战Research status-in-situ and key challenges in hydrogen safety
郑津洋;刘自亮;花争立;顾超华;王赓;陈霖新;张一苇;朱盛依;韩武林;
摘要(Abstract):
氢能具有储运便捷、来源多样、洁净环保等突出优点,许多国家把发展氢能作为重要的能源战略。氢安全是氢能大规模商业化应用的重要保障。在分析国内外氢安全领域近年来最新研究进展的基础上,依次从氢泄漏与扩散、氢燃烧与爆炸、氢与金属材料相容性及氢风险评价等方面,系统总结了国内外氢安全研究面临的挑战,并对我国氢安全的发展提出了建议。
关键词(KeyWords): 安全工程;氢泄漏与扩散;氢燃烧与爆炸;氢与材料相容性;氢风险评价
基金项目(Foundation): 国家重点研发计划项目(2018YFF0215101)
作者(Authors): 郑津洋;刘自亮;花争立;顾超华;王赓;陈霖新;张一苇;朱盛依;韩武林;
DOI: 10.13637/j.issn.1009-6094.2019.0535
参考文献(References):
- [1] WINTER C. Hydrogen energy—abundant, efficient,clean:a debate over the energy-system-of-change[J]. International Journal of Hydrogen Energy,2009,34(14):S1-S52.
- [2] ZHENG Jinyang(郑津洋),LIU Yanlei(刘延雷),XU Ping(徐平),et al. Numerical simulation of obstacle influence on leakage and diffusion of hydrogen due to highpressure storage tank failure[J]. Journal of Zhejiang University:Engineering Science(浙江大学学报:工学版),2008,42(12):2177-2180.
- [3] XU Ping(徐平),LIU Pengfei(刘鹏飞),LIU Yanlei(刘延雷),et al. Numerical simulation on the leakage and diffusion of hydrogen due to high pressured storage tank failure at different positions[J]. Journal of Chemical Engineering of Chinese Universities(高校化学工程学报),2008,22(6):921-926.
- [4] ZHENG Jinyang(郑津洋),CUI Tiancheng(崔天成),GU Chaohua(顾超华),et al. Effects of high pressure hydrogen on mechanical properties of 6061 aluminum alloy[J]. Chinese Journal of High Pressure Physics(高压物理学报),2017,31(5):4-9.
- [5] ZHENG Jinyang(郑津洋),ZHOU Chilou(周池楼),XU Ping(徐平),et al. R&D of materials testing equipment in high-pressure hydrogen[J]. Acta Energiae Solaris Sinica(太阳能学报),2013,34(8):1477-1483.
- [6] LIU Yanlei(刘延雷),ZHENG Jinyang(郑津洋),WEI Xinhua(韦新华),et al. Research on control of temperature rise in fast filling of composite high pressure hydrogen cylinders[J]. Acta Energiae Solaris Sinica(太阳能学报),2012,33(9):1621-1627.
- [7] ZHENG Jinyang(郑津洋),BIE Haiyan(别海燕),CHEN Honggang(陈虹港),et al. Experiment and simulation study on bonfire test of high-pressure storage vessels[J]. Acta Energiae Solaris Sinica(太阳能学报),2009,30(2):28-34.
- [8] ZHENG Jinyang(郑津洋),OU Kesheng(欧可升),HUA Zhengli(花争立),et al. Investigation on localized fire test method for on-board high-pressure hydrogen storage tanks[J]. Acta Energiae Solaris Sinica(太阳能学报),2014,35(1):58-63.
- [9] LI Jingyuan(李静媛),ZHAO Yongzhi(赵永志),ZHENG Jinyang(郑津洋).Simulation and analysis on leakage and explosion of high pressure hydrogen in hydrogen refuel station[J]. Journal of Zhejiang University:Engineering Science(浙江大学学报:工学版),2015,49(7):1389-1394.
- [10] ZHENG Jinyang(郑津洋),KAI Fangming(开方明),LIU Zhongqiang(刘仲强),et al. Risk assessment and control of high-pressure hydrogen equipment[J]. Acta Energiae Solaris Sinica(太阳能学报),2006,27(11):1168-1174.
- [11] ZHENG Jinyang(郑津洋),ZHANG Junfeng(张俊峰),CHEN Linxin(陈霖新),et al. Research status-in-situ of hydrogen safety[J]. Journal of Safety and Environment(安全与环境学报),2016,16(6):144-152.
- [12] LI Xuefang(李雪芳).Dispersion of unintended subsonic and supersonic hydrogen releases from hydrogen storage systems(储氢系统意外氢气泄漏和扩散研究)[D].Beijing:Tsinghua University,2015.
- [13] RUGGLES A J,EKOTO I W. Ignitability and mixing of underexpanded hydrogen jets[J]. International Journal of Hydrogen Energy,2012,37(22):17549-17560.
- [14] TAKENO K,OKABAYASHI K,KOUCHI A,et al.Concentration fluctuation and ignition characteristics during atmospheric diffusion of hydrogen spouted from high pressure storage[J]. International Journal of Hydrogen Energy,2017,42(22):15426-15434.
- [15] OKABAYASHI K,TAGASHIRA K,KAWAZOE K,et al. Non-steady characteristics of dispersion and ignitability for high-pressurized hydrogen jet discharged from a pinhole[J]. International Journal of Hydrogen Energy,2018,44(17):9071-9079.
- [16] EWAN B,MOODIE K. Structure and velocity measurements in underexpanded jets[J]. Combustion Science and Technology,1986,45(5/6):275-288.
- [17] HAN S H,CHANG D,KIM J S. Release characteristics of highly pressurized hydrogen through a small hole[J].International Journal of Hydrogen Energy,2013,38(8):3503-3512.
- [18] ANDREI V T. Knowledge gaps in hydrogen safety[R].Paris:International Energy Agency,2008.
- [19] TANG X,DZIEMINSKA E,ASAHARA M,et al. Numerical investigation of a high pressure hydrogen jet of 82MPa with adaptive mesh refinement:concentration and velocity distributions[J]. International Journal of Hydrogen Energy,2018,43(18):9094-9109.
- [20] DE STEFANO M,ROCOURT X,SOCHET I,et al.Hydrogen dispersion in a closed environment[J]. International Journal of Hydrogen Energy,2018,44(17):9031-9040.
- [21] LI Yunhao(李云浩),YU Yuan(喻源),ZHANG Qingwu(张庆武),et al. Numerical simulation for the hydrogen dispersion and distribution behaviors in the garage context[J]. Journal of Safety and Environment(安全与环境学报),2017,17(5):1884-1889.
- [22] LU Ming(卢明),XU Ye(徐晔),XIAO Xuezhang(肖学章).Numerical simulation on the leakage and diffusion of hydrogen in indoor environment[J]. Journal of Safety Science and Technology(中国安全生产科学技术),2011,7(8):29-33.
- [23] VENETSANOS A G,ADAMS P,AZKARATE I,et al.On the use of hydrogen in confined spaces:Results from the internal project Ins Hyde[J]. International Journal of Hydrogen Energy,2011,36(3):2693-2699.
- [24] BRENNAN S,MOLKOV V. Pressure peaking phenomenon for indoor hydrogen releases[J]. International Journal of Hydrogen Energy,2018,43(39):18530-18541.
- [25] MAKAROV D,SHENTSOV V,KUZNETSOV M,et al.Pressure peaking phenomenon:model validation against unignited release and jet fire experiments[J]. International Journal of Hydrogen Energy,2018,43(19):9454-9469.
- [26] FUSTER B,HOUSSIN-AGBOMSON D,JALLAIS S,et al. Guidelines and recommendations for indoor use of fuel cells and hydrogen systems[J]. International Journal of Hydrogen Energy,2017,42(11):7600-7607.
- [27] WITCOFSKI R D,CHIRIVELLA J E. Experimental and analytical analyses of the mechanisms governing the dispersion of flammable clouds formed by liquid hydrogen spills[J]. International Journal of Hydrogen Energy,1984,9(5):425-435.
- [28] STATHARAS J C,VENETSANOS A G,BARTZIS J G,et al. Analysis of data from spilling experiments performed with liquid hydrogen[J]. Journal of Hazardous Materials,2000,77(1):57-75.
- [29] VENETSANOS A G,PAPANIKOLAOU E,BARTZIS J G. The ADREA-HF CFD code for consequence assessment of hydrogen applications[J]. International Journal of Hydrogen Energy,2010,35(8):3908-3918.
- [30] HEDLEY D,HAWKSWORTH S J,RATTIGAN W,et al. Large scale passive ventilation trials of hydrogen[J].International Journal of Hydrogen Energy,2014,39(35):20325-20330.
- [31] JIN T,WU M,LIU Y,et al. CFD modeling and analysis of the influence factors of liquid hydrogen spills in open environment[J]. International Journal of Hydrogen Energy,2017,42(1):732-739.
- [32] SHAO X,PU L,LI Q,et al. Numerical investigation of flammable cloud on liquid hydrogen spill under various weather conditions[J]. International Journal of Hydrogen Energy,2018,43(10):5249-5260.
- [33] GIANNISSI S G,VENETSANOS A G. Study of key parameters in modeling liquid hydrogen release and dispersion in open environment[J]. International Journal of Hydrogen Energy,2018,43(1):455-467.
- [34] LIU Y,WEI J,LEI G,et al. Dilution of hazardous vapor cloud in liquid hydrogen spill process under different source conditions[J]. International Journal of Hydrogen Energy,2018,43(15):7643-7651.
- [35] JAKEL C,KELM S,REINECKE E A,et al. Validation strategy for CFD models describing safety-relevant scenarios including LH2/GH2release and the use of passive auto-catalytic recombiners[J]. International Journal of Hydrogen Energy,2014,39(35):20371-20377.
- [36] PRANKUL M,ICHARD M,ARNTZEN B J. Validation of CFD modelling of LH2spread and evaporation against large-scale spill experiments[J]. International Journal of Hydrogen Energy,2011,36(3):2620-2627.
- [37] HOUF W G,EVANS G H,SCHEFER R W. Analysis of jet flames and unignited jets from unintended releases of hydrogen[J]. International Journal of Hydrogen Energy,2009,34(14):5961-5969.
- [38] SCHEFER R W,HOUF W G,WILLIAMS T C,et al.Characterization of high-pressure,underexpanded hydrogen-jet flames[J]. International Journal of Hydrogen Energy,2007,32(12):2081-2093.
- [39] MOLKOV V,SAFFERS J. Hydrogen jet flames[J]. International Journal of Hydrogen Energy,2013,38(19):8141-8158.
- [40] MOGI T,HORIGUCHI S. Experimental study on the hazards of high-pressure hydrogen jet diffusion flames[J]. Journal of Loss Prevention in the Process Industries,2009,22(1):45-51.
- [41] FU Jiajia(付佳佳),WANG Changjian(王昌建),QIN Jun(秦俊),et al. Large eddy simulation of hydrogen jet fire[J]. Journal of Combustion Science and Technology(燃烧科学与技术),2013,19(5):473-477.
- [42] BRENNAN S L,MAKAROV D V,MOLKOV V. LES of high pressure hydrogen jet fire[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(3):353-359.
- [43] CIRRONE D M C,MAKAROV D,MOLKOV V. Simulation of thermal hazards from hydrogen under-expanded jet fire[J]. International Journal of Hydrogen Energy,2018,44(17):8886-8892.
- [44] GRUNE J,SEMPERT K,HABERSTROH H,et al. Experimental investigation of hydrogen-air deflagrations and detonations in semi-confined flat layers[J]. Journal of Loss Prevention in the Process Industries,2013,26(2):317-323.
- [45] GROETHE M,MERILO E,COLTON J,et al. Largescale hydrogen deflagrations and detonations[J]. International Journal of Hydrogen Energy,2007,32(13):2125-2133.
- [46] GRUNE J,SEMPERT K,FRIEDRICH A,et al. Detonation wave propagation in semi-confined layers of hydrogen-air and hydrogen-oxygen mixtures[J]. International Journal of Hydrogen Energy, 2017, 42(11):7589-7599.
- [47] VOLLMER K G,ETTNER F,SATTELMAYER T. Deflagration-to-detonation transition in hydrogen/air mixtures with a concentration gradient[J]. Combustion Science and Technology,2012,184(10/11):1903-1915.
- [48] WANG C J,WEN J X. Numerical simulation of flame acceleration and deflagration-to-detonation transition in hydrogen-air mixtures with concentration gradients[J].International Journal of Hydrogen Energy,2017,42(11):7657-7663.
- [49] ZHANG B. The influence of wall roughness on detonation limits in hydrogen-oxygen mixture[J]. Combustion and Flame,2016,169:333-339.
- [50] ASTBURY G R,HAWKSWORTH S J. Spontaneous ignition of hydrogen leaks:a review of postulated mechanisms[J]. International Journal of Hydrogen Energy,2007,32(13):2178-2185.
- [51] POROWSKI R,WOJCIECH R,ANDRZEJ T. Analysis of mechanisms of hydrogen spontaneous ignition during its release into atmosphere[J]. Przemysl Chemiczny,2013,92(1):76-81.
- [52] MOGI T,WADA Y,OGATA Y,et al. Self-ignition and flame propagation of high-pressure hydrogen jet during sudden discharge from a pipe[J]. International Journal of Hydrogen Energy,2009,34(14):5810-5816.
- [53] YAMADA E,KITABAYASHI N,HAYASHI A K,et al. Mechanism of high-pressure hydrogen auto-ignition when spouting into air[J]. International Journal of Hydrogen Energy,2011,36(3):2560-2566.
- [54] DUAN Q L,XIAO H H,GAO W,et al. Experimental investigation of spontaneous ignition and flame propagation at pressurized hydrogen release through tubes with varying cross-section[J]. Journal of Hazardous Materials,2016,320:18-26.
- [55] DUAN Q,ZHANG F,XIONG T,et al. Experimental study of spontaneous ignition and non-premixed turbulent combustion behavior following pressurized hydrogen release through a tube with local enlargement[J]. Journal of Loss Prevention in the Process Industries,2017,49:814-821.
- [56] DUAN Q L,XIAO H H,GAO W,et al. Experimental study on spontaneous ignition and flame propagation of high-pressure hydrogen release via a tube into air[J].Fuel,2016,181:811-819.
- [57] ISO 11114-4:2017 Transportable gas cylinders—Compatibility of cylinder and valve materials with gas contents—Part 4:Test methods for selecting steels resistant to hydrogen embrittlement[S].
- [58] ASME-BPVC-VIII-3:2017 Special requirements for vessels in hydrogen service[S].
- [59] ANSI/CSA CHMC 1—2014 Test methods for evaluating material compatibility in compressed hydrogen applications-metals[S].
- [60] ASTM G142—98(Reapproved 2016)Standard test method for determination of susceptibility of metals to embrittlement in hydrogen containing environments at high pressure,high temperature,or both[S].
- [61] GB/T 34542. 2—2018 Storage and transportation system for gaseous hydrogen—Part 2:Test methods for evaluating metallic material compatibility in hydrogen atmosphere(氢气储存输送系统———第2部分:金属材料与氢环境相容性试验方法)[S].
- [62] GB/T 34542. 3—2018 Storage and transportation system for gaseous hydrogen—Part 3:Test methods for determination of the susceptibility of metallic materials to hydrogen gas embrittlement(氢气储存输送系统———第3部分:金属材料氢脆敏感度试验方法)[S].
- [63] ZHOU Chilou(周池楼).Research on material mechanics properties testing equipment in 140 MPa high-pressure hydrogen environment(140 MPa高压氢气环境材料力学性能测试装置研究)[D]. Hangzhou:Zhejiang University,2015.
- [64] BARNOUSH A,VEHOFF H. Recent developments in the study of hydrogen embrittlement:hydrogen effect on dislocation nucleation[J]. Acta Materialia,2010,58(16):5274-5285.
- [65] HUA Z,ZHANG X,ZHENG J,et al. Hydrogen-enhanced fatigue life analysis of Cr-Mo steel high-pressure vessels[J]. International Journal of Hydrogen Energy,2017,42(16):12005-12014.
- [66] AMARO R L,LONG B E,SLIFKA A J,et al. Application of a model of hydrogen-assisted fatigue crack growth in 4130 steel[C]//Materials performance in hydrogen environments:Proceeding of the International Hydrogen Conference 2016. New York:ASME Press,2017.
- [67] ZHAI J,SHOU B,WANG H,et al. A hydrogen compatibility and suitability evaluation of the seamless steel tube 4130X[C]//Proceedings of ASME 2016 Pressure Vessels and Piping Conference. New York:American Society of Mechanical Engineers,2016.
- [68] MICHLER T,SAN MARCHI C,NAUMANN J,et al.Hydrogen environment embrittlement of stable austenitic steels[J]. International Journal of Hydrogen Energy,2012,37(21):16231-16246.
- [69] BRIOTTET L,MORO I,LEMOINE P. Quantifying the hydrogen embrittlement of pipeline steels for safety considerations[J]. International Journal of Hydrogen Energy,2012,37(22):17616-17623.
- [70] NANNINGA N E,LEVY Y S,DREXLER E S,et al.Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments[J]. Corrosion Science,2012,59:1-9.
- [71] HAN Yong(韩勇),CHEN Xingyang(陈兴阳),ZHOU Chengshuang(周成双),et al. Design and application of database of the mechanical properties of metallic materials in extreme hydrogen environment[J]. Science&Technology Review(科技导报),2016,34(8):89-95.
- [72] EL-SHIMY M,AFANDI A N. Overview of Power-to-Hydrogen-to-Power(P2H2P)systems based on variable renewable sources[C]//Proceedings of the International Conference on Electrical,Electronics, and Information Engineering. Guangzhou:Institute for Electrical and Electronics,2017.
- [73] FRIEDRICH K,NOACK C,MICHALSKI J,et al. Power-to-hydrogen:technical and economic assessment[C]//Proceedings of World Hydrogen Energy Conference,Zaragoza,Spain. Miami,FL,USA:International Association for Hydrogen Energy,2016.
- [74] ZHAO Yongzhi(赵永志),ZHANG Xin(张鑫),ZHENG Jinyang(郑津洋),et al. Safety technology for pipeline transportation of hydrogen-natural gas mixtures[J]. Chemical Engineering&Machinery(化工机械),2016,43(1):1-7.
- [75] MENG Bo(蒙波).Investigation on material property degradation and failure consequence of the high-pressure natural gas/hydrogen blends pipeline(含氢天然气高压输送管道材料性能劣化及失效后果研究)[D]. Hangzhou:Zhejiang University,2016.
- [76] MENG B,GU C,ZHANG L,et al. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures[J]. International Journal of Hydrogen Energy,2017,42(11):7404-7412.
- [77] LI Zhiyong(李志勇),PAN Xiangmin(潘相敏),MA Jianxin(马建新).Quantitative assessment on hydrogen releases of hydrogen refueling station by consequence modeling[J]. Journal of Tongji University:Natural Science(同济大学学报:自然科学版),2012,40(2):286-291.
- [78] KIKUKAWA S,MITSUHASHI H,MIYAKE A. Risk assessment for liquid hydrogen fueling stations[J]. International Journal of Hydrogen Energy,2009,34(2):1135-1141.
- [79] DADASHZADEH M,KASHKAROV S,MAKAROV D,et al. Risk assessment methodology for onboard hydrogen storage[J]. International Journal of Hydrogen Energy,2018,43(12):6462-6475.
- [80] MIDDHA P,HANSEN O R. CFD simulation study to investigate the risk from hydrogen vehicles in tunnels[J]. International Journal of Hydrogen Energy,2009,34(14):5875-5886.
- [81] LI Zhiyong,PAN Xiangmin,MA Jianxin. Quantitative risk assessment on 2010 Expo hydrogen station[J]. International Journal of Hydrogen Energy,2011,36(6):4079-4086.
- [82] BARALDI D,MELIDEO D,KOTCHOURKO A,et al.Development of a model evaluation protocol for CFD analysis of hydrogen safety issues the SUSANA project[J]. International Journal of Hydrogen Energy,2017,42(11):7633-7643.
- [83] TOLIAS I C,GIANNISSI S G,VENETSANOS A G,et al. Best practice guidelines in numerical simulations and CFD benchmarking for hydrogen safety applications[J].International Journal of Hydrogen Energy,2018,44(17):9050-9062.
- [84] GROTH K M,HECHT E S. HyRAM:a methodology and toolkit for quantitative risk assessment of hydrogen systems[J]. International Journal of Hydrogen Energy,2017,42(11):7485-7493.
- [85] HANSEN O R,GAVELLI F,DAVIS S G,et al. Equivalent cloud methods used for explosion risk and consequence studies[J]. Journal of Loss Prevention in the Process Industries,2013,26(3):511-527.
- [86] MIDDHA P,HANSEN O R. Using computational fluid dynamics as a tool for hydrogen safety studies[J]. Journal of Loss Prevention in the Process Industries,2009,22(3):295-302.
- [87] MIDDHA P,HANSEN O R,STORVIK I E. Validation of CFD-model for hydrogen dispersion[J]. Journal of Loss Prevention in the Process Industries,2009,22(6):1034-1038.
- [88] MIDDHA P,HANSEN O R,GRUNE J,et al. CFD calculations of gas leak dispersion and subsequent gas explosions:validation against ignited impinging hydrogen jet experiments[J]. Journal of Hazardous Materials,2010,179(1):84-94.
- [89] MIDDHA P,ICHARD M,ARNTZEN B. Validation of CFD modelling of LH2 spread and evaporation against large-scale spill experiments[J]. International Journal of Hydrogen Energy,2011,36(3):2620-2627.
- [90] VYAZMINA E,JALLAIS S. Validation and recommendations for FLACS CFD and engineering approaches to model hydrogen vented explosions:effects of concentration,obstruction vent area and ignition position[J]. International Journal of Hydrogen Energy,2016,41(33):15101-15109.
- [91] ZHANG Zhichun(张志春).Simulated calculation of hydrogen pipe leakage based on Phast 6. 7[J]. Electric Explosion Protection(电气防爆),2015(3):31-32.
- [92] ZHAO Boxin(赵博鑫),ZHU Ming(朱明),PENG Ying(彭莹),et al. Simulation of leakage from hydrogen and natural gas pipelines based on PHAST[J]. Petrochemical Industry Technology(石化技术),2017,24(5):48-50.
- [93] LUTOSTANSKY E,CREITZ L,JUNG S,et al. Modeling of underground hydrogen pipelines[J]. Process Safety Progress,2013,32(2):212-216.