基于深度学习的建筑工人安全帽佩戴识别研究On the identification of the safety helmet wearing manners for the construction company workers based on the deep learning theory
张明媛;曹志颖;赵雪峰;杨震;
摘要(Abstract):
建筑工人头部伤害是造成建筑伤亡事故的重要原因。佩戴安全帽是防止建筑工人发生脑部外伤事故的有效措施,而在实际工作中工人未佩戴安全帽的不安全行为时有发生。因此,对施工现场建筑工人佩戴安全帽自动实时检测进行探究,将为深入认知和主动预防安全事故提供新的视角。然而,传统的施工现场具有安全管理水平低下、管理范围小、主要依靠安全管理人员的主观监测并且时效性差、不能全程监控等一系列问题。针对上述现状,提出了一种基于Tensorflow框架,具有高精度、快速等特性的Faster RCNN方法,实时监测工人安全帽佩戴状况。为评估模型性能,收集了6 000张图像用于模型的训练与测试,结果表明,该模型识别工人安全监测中佩戴安全帽工人的平均精度达到90. 91%,召回率达到89. 19%;识别未佩戴安全帽工人的精度达到88. 32%,召回率达到85. 08%。同时,针对工人未佩戴安全帽而进入施工现场的违规行为,通过施工现场入口处监控摄像头截取视频流图像帧,设置检验试验,验证了本方法在施工现场实际应用的有效性。
关键词(KeyWords): 安全工程;施工管理;安全帽识别;深度学习;Faster RCNN
基金项目(Foundation): 中央高校基本科研业务费项目(DUT18JC44);; 大连市青年科技之星项目支持计划项目(2016RQ002)
作者(Authors): 张明媛;曹志颖;赵雪峰;杨震;
DOI: 10.13637/j.issn.1009-6094.2019.02.026
参考文献(References):
- [1] Ministry of Housing and Urban-Rural Development of the People's Republic of China(中华人民共和国住房和城乡建设部). Notification of safety accidents(安全事故通报)[EB/OL].[2018-03-08]. http://www. mohurd.gov. cn/wjfb/201803/t20180322_235474. html.
- [2] KONDA S,TIESMAN H,REICHARD A. Fatal traumatic brain injuries in the construction industry,2003-2010[J]. American Journal of Industrial Medicine,2016,59(3):212-220.
- [3] DONG X W S,CHOI S D,BORCHARDT J G,et al. Fatal falls from roofs among U. S. construction workers[J].Journal of Safety Research,2013,44(1):17-24.
- [4] PAN Dan(潘丹),LUO Fan(罗帆). Safety performance evaluation of the construction projects based on structural equation model[J]. Journal of Safety and Environment(安全与环境学报),2018,18(2):602-609.
- [5] Health and Safety Executive. Statistics on fatal injuries in the workplace in Great Britain 2016[EB/OL].[2016-04-19]. http://www. hse. gov. uk/Statistics/oshman. html.
- [6] ZHOU Zhenglong(周正龙),MA Benjiang(马本江),HU Fengying(胡凤英). On the management of the construction project based on the evolutionary stable strategy[J]. Journal of Safety and Environment(安全与环境学报),2016,16(1):168-171.
- [7] GUO B H W,GOH Y M,WONG K L X. A system dynamics view of a behavior-based safety program in the construction industry[J]. Safety Science,2018,104:202-215.
- [8] HINTON G E,OSINDERO S,THE Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation,2006,18(7):1527-1554.
- [9] SEO J,HAN S,LEE S,et al. Computer vision techniques for construction safety and health monitoring[J].Advanced Engineering Informatics, 2015, 29(2):239-251.
- [10] HAN S,LEE S,PENA-MORA F. Vision-based detection of unsafe actions of a construction worker:case study of ladder climbing[J]. Journal of Computing in Civil Engineering,2013,27(6):635-644.
- [11] YU Y T,GUO H L,DING Q H,et al. An experimental study of real-time identification of construction workers'unsafe behaviors[J]. Automation in Construction,2017,82:193-206.
- [12] DING L Y,FANG W L,LOU H B,et al. A deep hybrid learning model to detect unsafe behavior:Integrating convolution neural networks and long short-term memory[J]. Automation in Construction,2018,86:118-124.
- [13] HU Tian(胡恬),WANG Xingang(王新刚). Analysis and design of safety helmet recognition system based on wavelet transform and neural networks[J]. Software Guide(软件导刊),2006(23):37-39.
- [14] FANG Qi,LI Heng,LUO Xiaochun,et al. Detecting non-hardhat-use by a deep learning method from far-field surveillance videos[J]. Automation in Construction,2018,85:1-9.
- [15] DALAL N,TRIGGS B. Histograms of oriented gradients for human detection[C]//Computer vision and pattern recognition:Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York,NY,USA:Institute of Electrical and Electronics Engineers,2005:886-893.
- [16] PARK M W,ELSAFTY N,ZHU Z H. Hardhat-wearing detection for enhancing on-site safety of construction workers[J]. Journal of Construction Engineering and Management,2015,141(9):1-16.
- [17] MNEYMNEH B E,ABBAS M,KHOURY H. Automated hardhat detection for construction safety applications[C]//Proceedings of the 6th Creative Construction Conference(CCC). Primosten, Croatia:Elsevier Ltd.,2017:895-902.
- [18] REN S Q,HE K M,GIRSHICK R,et al. Faster RCNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Patter Analysis and Machine Intelligence,2017,39(6):1137-1149.
- [19] CHENG Jiahui(程嘉晖). Aircraft image recognition based on deep convolution neural network(基于深度卷积神经网络的飞行器图像识别算法研究)[D]. Hangzhou:Zhejiang University,2017.