在线极限学习机在岩爆预测中的应用Attempt to study the applicability of the online sequential extreme learning machine to the rock burst forecast
兰明,刘志祥,冯凡
摘要(Abstract):
为有效预测地下工程岩爆的发生及烈度,结合地下工程岩爆的特点,分析岩爆影响因素及相关判别依据,选取围岩最大切向应力σ与岩石抗压强度σc之比σ/σc、岩石抗压强度σc与岩石抗拉强度σt之比σc/σt以及弹性能量指数Wet为判别因子,引入在线极限学习机理论,建立了岩爆预测的OS-ELM判别模型。以搜集到的国内外15组工程岩爆数据进行训练建模,训练完成后将样本数据做输出预测,得到模型的预测精度达97.98%,并与SVM、BP模型进行对比分析,结果表明,OS-ELM模型精度优于SVM和BP模型。利用该模型对国内两处隧道岩爆情况进行预测,结果与实际情况基本相符。研究表明,OSELM判别模型在岩爆烈度分级上具有良好的适用性和有效性。
关键词(KeyWords): 安全工程;地下工程;在线极限学习机;岩爆分级;预测
基金项目(Foundation): 国家科技支撑计划项目(2013BAB02B05,2012BAB08B01);; 中南大学教师基金项目(2013JSJJ029);; 国家自然科学基金和上海宝钢集团公司联合资助项目(51074177)
作者(Author): 兰明,刘志祥,冯凡
参考文献(References):
- [1]XIONG Xiaobo(熊孝波),GUI Guoqing(桂国庆),XU Jiancong(许建聪),et al.Application of extension method to prediction of rockburst of underground engineering[J].Journal of PLA University of Science and Technology:Natural Science Edition(解放军理工大学学报:自然科学版),2007,8(6):695-701.
- [2]SUN Yuefeng(孙月峰),YAN Yafei(闫雅飞),ZHANG Biaozhi(张表志),et al.Fuzzy neural network method based on the T-S model for the urban water demand forecasting and its application[J].Journal of Safety and Environment(安全与环境学报),2013,13(2):136-139.
- [3]YUAN Honglin(袁红林),GONG Ling(龚令),ZHANG Qionghua(张琼华),et al.Forecasting the water quality index in Zaohe River based on BP neural network model[J].Journal of Safety and Environment(安全与环境学报),2013,13(2):106-110.
- [4]CHEN Haijun(陈海军),LI Nenghui(郦能惠),NIE Dexin(聂德新),et al.A model for prediction of rockburst by artificial neural network[J].Chinese Journal of Geotechnical Engineering(岩土工程学报),2002,24(2):229-232.
- [5]CHEN Zuyun(陈祖云),ZHANG Guizhen(张桂珍),WU Changfu(邬长福),et al.Application of the support vector machine in prediction of rock burst[J].Metal Mine(金属矿山),2009,401:100-104.
- [6]ZUO Dijun(左弟俊).Theory and application research on extreme learing machine(极速学习理论与应用研究)[D].Xi’an:Xidian University,2012.
- [7]YANG Le(杨乐),ZHANG Rui(张瑞).Online sequential ELM algorithm and its improvement[J].Journal of Northwest University:Natural Science Edition(西北大学学报:自然科学版),2012,42(6):885-889.
- [8]PENG Zhu(彭祝),WANG Yuanhan(王元汉),LI Yanjie(李延芥).Griffith theory and criterion of rock burst[J].Chinese Journal of Rock Mechanics and Engineering(岩石力学与工程学报),1996,15(S):491-495.
- [9]LU Jiayou(陆家佑).Theory and practice on rock burst prediction[J].Coal Mining Technology(煤矿开采),1998,32(3):26-29.
- [10]WANG Yuanhan(王元汉),LI Wodong(李卧东),LI Qiguang(李启光),et al.Method of fuzzy comprehensive evaluations for rockburst prediction[J].Chinese Journal of Rock Mechanics and Engineering(岩石力学与工程学报),1998,17(5):493-501.
- [11]HOEK E,BROWN E T.Underground exavation in rock[M].London:Institute of Mining and Metallurgy,1980.
- [12]ZHU Baolong(朱宝龙),CHEN Qiang(陈强),LI Houtian(李厚田).Rockburst prediction method based on the artificial neural network[J].Journal of Geological Hazards and Environment Preservation(地质灾害与环境保护),2002,13(3):56-59.
- [13]KIDYBINSKI A.Bursting liability indices of coal[J].Journal of Rock mechanical in Mining Science and Geomechanics,1981,18(4):295-304.
- [14]SHU Jun(舒隽),GAN Lei(甘磊).Research on cost estimation of power lines construction projects based on extreme learning machine method[J].Modern Electric Power(现代电力),2011,28(4):78-83.
- [15]ZHANG Lewen(张乐文),ZHANG Deyong(张德永),LI Shucai(李术才),et al.Application of RBF neural network to rockburst prediction based on rough set theory[J].Rock and Soil Mechanics(岩土力学),2012,33(S):270-276.
- [16]FU Yuhua(付玉华),DONG Longjun(董陇军).Bayes discriminant analysis model and its application to the prediction and classification of rockburst[J].Journal of China University of Mining&Technology(中国矿业大学学报),2009,38(4):528-533.