nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv searchzone qikanlogo popupnotification paper paperNew
2026, 01, v.26 11-20
基于改进FMECA的远程数字塔台风险分析
基金项目(Foundation): 天津市应用基础研究多元投入基金重点项目(21JCZDJC00780); 天津市教委科研计划项目(2020KJ 028)
邮箱(Email):
DOI: 10.13637/j.issn.1009-6094.2025.0172
摘要:

为解决远程数字塔台系统安全评估中主观影响和失效模式发生概率的等级区分度不足的问题,研究提出了一种改进的远程塔台系统失效模式、影响及危害度(Failure Mode, Effects, and Criticality Analysis, FMECA)分析方法。首先,通过模糊综合评判法对多名专家的评价值进行量化,降低主观因素对结果的影响;其次,将主观权重与客观权重相结合,减少失效模式的严重性评估偏差;再次,采用线性插值,增强同一发生概率等级内失效模式的区分度;最后,以远程塔台系统的26种典型失效模式为例进行分析。结果显示,全景图像拼接融合延迟和视频传输卡顿是影响系统功能的关键因素,同时验证了改进FMECA方法能够更清晰地区分失效模式的优先级。

Abstract:

To address the challenges of subjective bias and limited discriminative capacity in failure mode prioritization for remote digital tower system safety assessments, this study proposes an enhanced Failure Mode, Effects, and Criticality Analysis(FMECA) methodology. The framework incorporates three key improvements: fuzzy comprehensive evaluation, hybrid weighting, and linear interpolation. First, the fuzzy comprehensive evaluation method is used to quantify expert judgments through a nine-level linguistic scale, converting qualitative assessments into numerical membership matrices. This approach reduces subjectivity by aggregating evaluations from multiple experts. Second, a hybrid weighting strategy is employed, combining subjective weights derived from the Analytic Hierarchy Process(AHP) with objective weights calculated using entropy theory. This balances expert insights with data-driven rigor. Third, linear interpolation refines the discrete Occurrence Probability Rating(OPR) classification, overcoming the granularity limitations present in traditional risk prioritization methods. Experimental validation on 26 typical failure modes demonstrates the effectiveness of the proposed method. The results show that the hybrid weighting strategy reduces severity ranking deviation by 18.6% compared to single-weight approaches, thereby enhancing the objectivity of criticality assessments. The linear interpolation method enhances intra-level discrimination for mid-tier OPR categories by 22.3%, effectively distinguishing between failure modes with similar occurrence probabilities. Key high-risk failure modes, such as panoramic image fusion delays and optical sensor lags, are identified as critical threats to system stability. Additionally, the optimized Risk Priority Number(RPN) model achieves a 34.8% improvement in prioritization accuracy, allowing for clearer differentiation of failure modes with overlapping risk scores in traditional FMECA. In conclusion, the improved FMECA framework systematically addresses the ambiguity and subjectivity inherent in conventional methods. By integrating fuzzy logic, hybrid weighting, and continuous probability scoring, it offers a more robust and granular risk assessment tool for complex systems such as remote digital towers. These advancements provide practical support for optimizing system design, maintenance strategies, and safety management, ultimately enhancing operational reliability in critical aviation infrastructure.

参考文献

[1] 张建平,田小强.远程塔台运行研究与应用综述[J].科学技术与工程,2020,20(24):9742-9750.ZHANG J P,TIAN X Q.A review on research and application of remote tower operation[J].Science Technology and Engineering,2020,20(24):9742-9750.

[2] KEARNEY P,LI W,ZHANG J,et al.Human performance assessment of a single air traffic controller conducting multiple remote tower operations[J].Human Factors and Ergonomics in Manufacturing & Service Industries,2020,30(2):114-123.

[3] PAN W,LUO Y,HAN S,et al.Summary of reliability analysis methods of remote tower system[C]//IOP Conference Series:Earth and Environmental Science,December 18-19,2020,Xi'an,Shaanxi,China.Bristol:IOP Publishing,2020.

[4] LIU C,ZHOU C,TAN L,et al.Reliability analysis of subsea manifold system using FMECA and FFTA[J].Scientific Reports,2024,14(1):22873.

[5] ZHANG H,KANG J,ZHANG G.Reliability analysis of air suction duckbill type seed metering device based on improved FMECA method[J].Journal of Shihezi University (Natural Science),2019,37(5):543-548.

[6] 金兴明,屠庆慈.结合FMECA可靠性预计法[J].北京航空航天大学学报,1992(1):32-37.JIN X M,TU Q C.The integrating with FMECA reliability prediction method[J].Journal of Beijing University of Aeronautics and Astronautics,1992(1):32-37.

[7] 徐斌,潘卫军,罗玉明,等.机场远程塔台系统故障模式影响及危害性分析[J].舰船电子工程,2022,42(2):115-119.XU B,PAN W J,LUO Y M,et al.Failure mode effect and criticality analysis of airport remote tower system[J].Ship Electronic Engineering,2022,42(2):115-119.

[8] BRAHIM B I,ADDOUCHE S,MHAMEDI E A,et al.Build a Bayesian network from FMECA in the production of automotive parts:diagnosis and prediction[J].IFAC Papers OnLine,2019,52(13):2572-2577.

[9] 王明达,李云飞,吴志生,等.面向燃驱压缩机组的故障知识本体建模及应用研究[J].安全与环境学报,2023,23(10):3472-3482.WANG M D,LI Y F,WU Z S,et al.Research on fault knowledge ontology modeling and application for combustion-driven compressor units[J].Journal of Safety and Environment,2023,23(10):3472-3482.

[10] 于涵,张和生.基于模糊综合评价的动车组牵引传动系统改进FMECA[J].铁道学报,2022,44(9):33-41.YU H,ZHANG H S.Improved FMECA for traction transmission system of EMU based on fuzzy comprehensive evaluation[J].Journal of the China Railway Society,2022,44(9):33-41.

[11] LIU H C,LIU L,LIU N.Risk evaluation approaches in failure mode and effects analysis:a literature review[J].Expert Systems with Applications,2013,40(2):828-838.

[12] 康锐,石荣德.FMECA技术及其应用[M].北京:国防工业出版社,2006:89-92.KANG R,SHI R D.FMECA technology and its applications[M].Beijing:National Defense Industry Press,2006:89-92.

[13] 戴城国,王晓红,张新,等.基于模糊综合评判的电液伺服阀FMECA[J].北京航空航天大学学报,2011,37(12):1575-1578.DAI C G,WANG X H,ZHANG X,et al.Fuzzy comprehensive evaluation in FMECA of electro-hydraulic servo valve[J].Journal of Beijing University of Aeronautics and Astronautics,2011,37(12):1575-1578.

[14] LIU P,WU Y,LI Y,et al.An improved FMEA method based on the expert trust network for maritime transportation risk management[J].Expert Systems With Applications,2024(10):33-42.

[15] 章浩然,洪荣晶,陈复兴,等.基于FMECA和模糊评判的数控机床可靠性分析方法[J].制造技术与机床,2020(11):125-129.ZHANG H R,HONG R J,CHEN F X,et al.Reliability analysis method of CNC machine tools on FMECA and fuzzy evaluation[J].Manufacturing Technology & Machine Tool,2020(11):125-129.

[16] 张发明.综合评价基础方法及应用[M].北京:科学出版社,2018:121-123.ZHANG F M.Comprehensive evaluation of foundational methodologies and applications[M].Beijing:Science Press,2018:121-123.

[17] JAFARZADEH GHOUSHCHI S,SOLEIMANI NIK M,POURASAD Y.Health safety and environment risk assessment using an extended BWM-COPRAS approach based on G-number theory[J].International Journal of Fuzzy Systems,2022,24(4):1888-1908.

[18] 卿黎,张胜跃,张宇栋,等.电站锅炉承压部件失效模式分析[J].安全与环境学报,2016,16(4):17-22.QING L,ZHANG S Y,ZHANG Y D,et al.Failure mode analysis for the pressure bearing components of the power-generating boiler[J].Journal of Safety and Environment,2016,16(4):17-22.

[19] DUAN C Y,CHEN X Q,SHI H,et al.A new model for failure mode and effects analysis based on k-means clustering within hesitant linguistic environment[J].IEEE Transactions on Engineering Management,2019,11(9):1-11.

[20] HUANG J,LIU H C,DUAN C Y,et al.An improved reliability model for FMEA using probabilistic linguistic term sets and TODIM method[J].Annals of Operations Research,2022,312(1):235-258.

[21] KHORSHIDI H A,GUNAWAN I,NIKFALAZAR S.Application of fuzzy risk analysis for selecting critical processes in implementation of SPC with a case study[J].Group Decision and Negotiation,2016,25:203-220.

[22] 中国民用航空局空管行业管理办公室.民航空中交通管理安全评估管理办法:AP-83-TM-2011-01[S].北京:中国民用航空局,2011.Air Traffic Control Department of the Civil Aviation Administration of China.Measures for the management of safety assessment in civil aviation air traffic management:AP-83-TM-2011-01[S].Beijing:Civil Aviation Administration of China,2011.

基本信息:

DOI:10.13637/j.issn.1009-6094.2025.0172

中图分类号:V355.1

引用信息:

[1]王超,张泽宇,冯村,等.基于改进FMECA的远程数字塔台风险分析[J].安全与环境学报,2026,26(01):11-20.DOI:10.13637/j.issn.1009-6094.2025.0172.

基金信息:

天津市应用基础研究多元投入基金重点项目(21JCZDJC00780); 天津市教委科研计划项目(2020KJ 028)

检 索 高级检索