nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2024, 12, v.24 4572-4580
STPA方法在先进绝热压缩空气储能系统安全性分析中的应用
基金项目(Foundation):
邮箱(Email):
DOI: 10.13637/j.issn.1009-6094.2024.0930
摘要:

传统评价方法无法全面地辨识涉及多个交互部件和复杂控制策略的压缩空气储能(Compressed Air Energy Storage, CAES)系统的潜在风险。为了更加全面地辨识CAES系统的潜在风险,研究将系统论过程分析(System-Theoretic Process Analysis, STPA)方法引入至先进绝热压缩空气储能系统中并进行风险分析。首先,通过对多种构型的压缩空气储能系统进行效率分析并确定研究对象;其次,定义系统储热过程中系统级事故和危害,构建控制结构模型,并识别可能导致事故的控制动作;最后,从系统控制、组件失效、系统协调不足、人为操作失误等多个维度,分析32个潜在的系统级危险场景,并提出109项针对性的控制措施。此外,选取危害与可操作性研究(Hazard and Operability Study, HAZOP)方法对STPA分析结果进行对比分析与可靠性验证,相比于HAZOP方法28.6%的识别率,STPA方法可有效识别61.5%的系统交互故障,在揭示储能系统复杂交互故障方面展现出了优越性。基于STPA的风险分析对于优化系统设计和提升系统稳定性与可靠性具有重要指导意义,研究为类似新兴能源系统的风险识别提供了参考和借鉴。

Abstract:

The promotion and implementation of Compressed Air Energy Storage(CAES) technology are becoming increasingly widespread. However, traditional evaluation methods fall short in comprehensively identifying the potential risks associated with CAES systems, which involve multiple interactive components and complex control strategies. To achieve a more comprehensive and systematic risk identification for energy storage systems and to ensure their safe and stable operation, this paper introduces the System-Theoretic Process Analysis(STPA) method for the first time to conduct a safety analysis of the Advanced Adiabatic Compressed Air Energy Storage(AA-CAES) system. First, this article examines various configurations of compressed air energy storage systems, emphasizing efficiency to select the optimal research subject. Subsequently, the STPA method is employed to qualitatively analyze the Advanced Adiabatic Compressed Air Energy Storage(AA-CAES) system and identify hazards at the system level. By analyzing the control processes of the system and establishing a control structure, 19 types of unsafe actions that may arise during system interactions were identified. The causes of 95 unsafe behaviors were investigated, leading to the proposal of 109 corresponding safety constraint measures. Finally, to verify the reliability of the STPA analysis results, the risk faults identified through the STPA method were compared with those identified by the Hazard and Operability Study(HAZOP) method. The classification and statistics of the fault types obtained from the analysis indicate that the STPA method achieves a recognition rate of 61% for system interaction faults, which is 5% higher than traditional HAZOP methods. This demonstrates that the STPA method has significant advantages in identifying complex interactive faults in energy storage systems. Risk analysis based on the STPA method can identify system risk factors during the design phase, facilitating the optimization of system design and operation while enhancing overall stability and reliability. This article is the first to apply the STPA method for risk analysis of the AA-CAES system, validating the effectiveness of the approach and offering valuable references and new insights for risk identification in similar systems.

参考文献

[1] 刘林植.适合于中国国情的大型压缩空气蓄能系统优化设计[D].保定:华北电力大学,2015.LIU L Z.Optimization design for large-scale compressed air energy storage system according to Chinese condition[D].Baoding:School of Energy Power and Mechanical Engineering,2015.

[2] 刘伟,李振明,刘铭扬,等.高温相变储热材料制备与应用研究进展[J].储能科学与技术,2023,12(2):398-430.LIU W,LI Z M,LIU M Y,et al.Review of high-temperature phase change heat storage material preparation and applications[J].Energy Storage Science and Technology,2023,12(2):398-430.

[3] 陈海生,李泓,马文涛,等.2021年中国储能技术研究进展[J].储能科学与技术,2022,11(3):1052-1076.CHEN H S,LI H,MA W T,et al.Research progress of energy storage technology in China in 2021[J].Energy Storage Science and Technology,2022,11(3):1052-1076.

[4] 陈来军,梅生伟,王俊杰,等.面向智能电网的大规模压缩空气储能技术[J].电工电能新技术,2014,33(6):1-6.CHEN L J,MEI S W,WANG J J,et al.Smart grid oriented large-scale compressed air energy storage technology[J].Advanced Technology of Electrical Engineering and Energy,2014,33(6):1-6.

[5] LOADER P R.Dynamic behavior and performance of multi-stage compressed air energy storage systems[J].Energy,1999,24(11):947-961.

[6] KIM Y M,LEE J H,KIM S J,et al.Potential and evolution of compressed air energy storage:energy and exergy analyses[J].Entropy,2012,14(8):1501-1521.

[7] GUNEY M S,TEPE Y.Classification and assessment of energy storage systems[J].Renewable and Sustainable Energy Reviews,2017,75:1187-1197.

[8] ZHANG A,YIN Z,WU Z,et al.Investigation of the Compressed Air Energy Storage (CAES) system utilizing Systems-Theoretic Process Analysis (STPA) towards safe and sustainable energy supply[J].Renewable Energy,2023,206:1075-1085.

[9] 孙烨.基于AA-CAES的冷热电联产系统热经济性分析与优化[D].保定:华北电力大学,2021.SUN Y.Thermoeconomic analysis and optimization of a combined cooling,heating and power system based on AA-CAES[D].Baoding:School of Energy Power and Mechanical Engineering,2021.

[10] 邵慧,查明彦,吴振.空压机余热回收节能改造[J].现代制造技术与装备,2018(6):164,166.SHAO H,CHA M Y,WU Z.Air compressor waste heat recovery energy-saving reform[J].Modern Manufacturing Technology and Equipment,2018(6):164,166.

[11] 张家俊,李晓琼,张振涛,等.压缩二氧化碳储能系统研究进展[J].储能科学与技术,2023,12(6):1928-1945.ZHANG J J,LI X Q,ZHANG Z T,et al.Research progress of compressed carbon dioxide energy storage system[J].Energy Storage Science and Technology,2023,12(6):1928-1945.

[12] LEVESON N G,THOMAS J P.STPA handbook[EB/OL].[2018-03-01].http://psas.scripts.mit.edu/home/get_file1.php?name=STPA_Handbook.pdf.

[13] 赖茜,梁伟,王世彪,等.钢铁企业余热强化的压缩空气储能系统性能研究[J].冶金能源,2021,40(2):23-28.LAI Q,LIANG W,WANG S B,et al.Performance of a compressed air energy storage system enhanced by using waste heat of steelworks[J].Energy for Metallurgical Industry,2021,40(2):23-28.

[14] 让涛.一种基于STPA的软件安全性分析与验证方法[J].电子世界,2016(5):135-136.RANG T.A software security analysis and verification method based on STPA[J].Electronic World,2016(5):135-136.

[15] DGHAYM D,HOANG T S,TURNOCK S R,et al.An STPA-based formal composition framework for trustworthy autonomous maritime systems[J].Safety Science,2021,136:105139.

[16] 董昕源.基于人机交互理论的一种模糊PID控制研究[J].自动化应用,2022(5):13-16.DONG X Y.Research on fuzzy PID control based on human-computer interaction theory[J].Automation Application,2022(5):13-16.

[17] 梅国梁,韩厚德.模糊控制技术在换热器控制系统中的应用[J].机电设备,2009,26(1):22-26.MEI G L,HAN H D.Application of fuzzy control technology on the heat exchanger control system[J].Mechanical and Electrical Equipment,2009,26(1):22-26.

[18] 胡剑波,郑磊.综合火/飞/推控制系统复杂任务的STAMP建模和STPA分析[J].航空工程进展,2016,7(3):309-315.HU J B,ZHENG L.STAMP modeling and STPA analysis for complex tasks of integrated fire,flying and propulsion control systems[J].Advances in Aeronautical Science and Engineering,2016,7(3):309-315.

基本信息:

DOI:10.13637/j.issn.1009-6094.2024.0930

中图分类号:TK02;X913

引用信息:

[1]赵东风,王亚琪,刘尚志,等.STPA方法在先进绝热压缩空气储能系统安全性分析中的应用[J].安全与环境学报,2024,24(12):4572-4580.DOI:10.13637/j.issn.1009-6094.2024.0930.

基金信息:

检 索 高级检索