nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 12, v.25 4566-4576
融合CNN-GRU-Attention的含水砂岩蠕变预测方法研究
基金项目(Foundation): 国家自然科学基金项目(51874164,52174185); 辽宁省教育厅基本科研项目(LJ212410147016)
邮箱(Email):
DOI: 10.13637/j.issn.1009-6094.2025.0435
摘要:

随着我国煤炭资源开采逐渐向深部延伸,深部煤岩体在高地应力、高温、高渗透压及时间效应叠加的复杂环境下,围岩蠕变问题日益突出,严重威胁矿井的开采安全和生产效率。为有效预测含水砂岩的蠕变行为,提出了一种融合卷积神经网络(Convolutional Neural Networks, CNN)、门控循环单元(Gated Recurrent Unit, GRU)和注意力(Attention)机制的CGA深度学习模型。模型结合CNN的空间特征提取能力、GRU的时间序列建模能力及Attention的动态权重分配能力,提升了对非线性、长时间依赖关系的捕捉能力。利用实测数据对CGA模型中的优化算法、卷积层数、卷积核数量、GRU层数和GRU层神经元数量进行了训练和确定。应用CGA模型对含水砂岩蠕变行为进行了预测,并与实测数据进行了对比。结果表明,与CNN、反向传播神经网络(Back Propagation Neural Network, BPNN)和CNN-GRU模型相比,CGA模型的平均绝对百分比误差(MAPE)分别降低了25.00%、18.93%和12.00%,平均绝对误差(MAE)分别降低了17.84%、13.77%和4.86%,均方误差(MSE)分别降低了26.04%、15.35%和6.02%,均方根误差(RMSE)分别降低了13.99%、8.01%和3.12%,CGA模型的R2达到了0.981 163,表明CGA模型具有更好的非线性拟合能力。利用CGA模型有助于掌握巷道围岩的长期变形行为,为围岩控制方案设计提供基础依据。

Abstract:

To effectively predict the creep behavior of water-bearing sandstone, we propose a deep learning model called CNN-GRU-Attention(CGA), which integrates Convolutional Neural Networks(CNN), Gated Recurrent Units(GRU), and an Attention mechanism. This model leverages the spatial feature extraction capabilities of CNN, the time-series modeling abilities of GRU, and the dynamic weight allocation of the Attention mechanism to enhance the capture of nonlinear relationships and long-term dependencies. The CNN component efficiently extracts local features and spatial dependencies from the data through convolutional and pooling layers, overcoming the limitations of traditional methods in capturing nonlinear features. The GRU effectively models long-term dependencies in sequential data through its update and reset gate mechanisms, addressing the limitations of CNN in time-series modeling. Meanwhile, the Attention mechanism dynamically adjusts the importance of hidden states at different time steps using a trainable weight matrix. Its fundamental principle involves generating normalized weights by calculating attention scores for each time step, which emphasizes creep characteristics during critical phases and resolves the issue of GRU assigning equal weights to all time-step information in time-series processing. The optimization algorithm, number of convolutional layers, number of convolutional kernels, number of GRU layers, and number of neurons in the GRU layer of the CGA model were determined through training with measured data. The final structure of the CGA model includes 3 convolutional layers with 16, 32, and 64 kernels, respectively, utilizing ReLU as the activation function; 3 GRU layers, each containing 64 neurons; and an Attention layer with a dimension of 50. The CGA model was employed to predict the creep behavior of sandstone at water contents of 0, 1.6%, 2.4%, and 3.2% under a pressure of 20 MPa, with the results compared against the measured data. The results demonstrate that the prediction curve of the CGA model closely aligns with the measured values, exhibiting superior evaluation metrics: MAPE of 1.317 323%, MAE of 0.018 417, MSE of 0.008 521, RMSE of 0.092 300, and R2 of 0.981 163, all surpassing those of the CNN, Back Propagation Neural Network(BPNN), and CNN-GRU models. Specifically, the CGA model shows a reduction in MAPE by 25.00%, 18.93%, and 12.00% compared with the CNN, BPNN, and CNN-GRU models, respectively. For MAE, it reduces by 17.84%, 13.77%, and 4.86%. In terms of MSE, the reductions are 26.04%, 15.35%, and 6.02%. In terms of RMSE, the CGA model achieves reductions of 13.99%, 8.01%, and 3.12%, while the R2 value increases to 0.981 163, indicating that the CGA model exhibits superior nonlinear fitting capabilities. Employing the CGA model enhances the understanding of the long-term deformation behavior of roadway surrounding rock, providing a foundation for the design of surrounding rock control schemes. This advancement is significant for promoting the safe and efficient development of underground mining.

参考文献

[1] 胡汉舟.绿色转型加快推进能源保障全面增强[EB/OL].[2025-01-17].https://www.stats.gov.cn/sj/sjjd/202501/ t202501171958342.html.HU H Z.Accelerating green transition and strengthening energy security[EB/OL].[2025-01-17].https://www.stats.gov.cn/sj/sjjd/202501/t202501171958342.html.

[2] 袁亮.我国煤矿安全发展战略研究[J].中国煤炭,2021,47(6):1-6.YUAN L.Study on the development strategy of coal mine safety in China[J].China Coal,2021,47(6):1-6.

[3] 卢小雨,谢雅,董春亮,等.单裂隙类岩石蠕变力学特性及损伤演化规律[J/OL].应用力学学报:1-14.[2025-06-24].http://kns.cnki.net/kcms/ detail/61.1112.O3.20240627.1553.004.html.LU X Y,XIE Y,DONG C L,et al.Creep mechanical properties and damage evolution law of single-fractured rock-like materials[J/OL].Chinese Journal of Applied Mechanics:1-14.[2025-06-24].http://kns.cnki.net/kcms/detail/61.1112.O3.20240627.1553.004.html.

[4] 霍丙杰,张海波,吕华新,等.高水平应力厚煤层巷道围岩变形机理及控制技术研究[J/OL].安全与环境学报:1-11.[2025-06-24].https://doi.org/10.13637/j.issn.1009-6094.2024.2244.HUO B J,ZHANG H B,LÜ H X,et al.Study on deformation mechanism and control technology of roadway surrounding rock in thick coal seam under high-level stress[J/OL].Journal of Safety and Environment:1-11.[2025-06-24].https://doi.org/10.13637/j.issn.1009-6094.2024.2244.

[5] 谢良甫,刘晓东,刘学军.基于侧压力差异性的深部巷道多场耦合规律分析[J].安全与环境学报,2023,23(2):451-457.XIE L F,LIU X D,LIU X J.Multi-field coupling law analysis of deep roadway based on lateral pressure difference[J].Journal of Safety and Environment,2023,23(2):451-457.

[6] 孙闯,王宇,郭良银,等.渗流作用下深部高温巷道围岩温度场分布规律[J].安全与环境学报,2024,24(8):2961-2970.SUN C,WANG Y,GUO L Y,et al.Distribution law of temperature field in surrounding rock of deep high-temperature roadway under seepage action[J].Journal of Safety and Environment,2024,24(8):2961-2970.

[7] 孙晓明,缪澄宇,姜铭,等.基于改进西原模型的不同含水率砂岩蠕变实验及理论研究[J].岩石力学与工程学报,2021,40(12):2411-2420.SUN X M,MIAO C Y,JIANG M,et al.Experimental and theoretical study on creep of sandstone with different moisture contents based on modified Nishihara model[J].Chinese Journal of Rock Mechanics and Engineering,2021,40(12):2411-2420.

[8] 王兴开,夏才初,朱哲明,等.单级荷载下极软煤岩长期蠕变规律及本构模型研究[J].岩土力学,2021,42(8):2078-2088,2098.WANG X K,XIA C C,ZHU Z M,et al.Long-term creep law and constitutive model of extremely soft coal rock subjected to single-stage load[J].Rock and Soil Mechanics,2021,42(8):2078-2088,2098.

[9] 姜鹏,潘鹏志,赵善坤,等.基于应变能的岩石黏弹塑性损伤耦合蠕变本构模型及应用[J].煤炭学报,2018,43(11):2967-2979.JIANG P,PAN P Z,ZHAO S K,et al.A coupled elasto-viscoplastic damage model based on strain energy theory of rock and application[J].Journal of China Coal Society,2018,43(11):2967-2979.

[10] 刘之喜,赵光明,孟祥瑞,等.岩石蠕变应变能密度演化时效特征与损伤本构模型研究[J].采矿与岩层控制工程学报,2025,7(1):157-170.LIU Z X,ZHAO G M,MENG X R,et al.Study on time-dependent characteristics of creep strain energy density evolution and damage constitutive model for rock[J].Journal of Mining and Strata Control Engineering,2025,7(1):157-170.

[11] GUO S T,WEN S J,GUO H Y,et al.The creep test study and macro-detail analysis of argillaceous red sandstone in different water-containing states[J].Advances in Civil Engineering,2022,5:9698675.

[12] TARIFARD A,TÖRÖK Á,GÖRÖG P.Fractional derivative-based burger creep model for soft rocks and its verification using tunnel monitoring results and experimental data[J].Arabian Journal for Science and Engineering,2024,49(12):1-12.

[13] RAISSI M,PERDIKARIS P,KARNIADAKIS G E,et al.Physics-informed neural networks:a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J].Journal of Computational Physics,2019,378:686-707.

[14] LI C,ZHANG M,ZHANG X.Enhancing concrete creep prediction with deep learning:a soft-sorted one-dimensional CNN approach[J].IEEE Access,2023,11:139314-139325.

[15] WANG H W,XU L M,YU H T,et al.Research on prediction of high energy microseismic events in rock burst mines based on BP neural network[J].Scientific Reports,2024,14(1):29934.

[16] TIAN Y,WANG G,LI H,et al.A novel deep learning method based on 2-D CNNs and GRUs for permeability prediction of tight sandstone[J].Geoenergy Science and Engineering,2024,238:212851.

[17] CEN J,LI J X,LIU X,et al.A hybrid prediction model of vessel trajectory based on attention mechanism and CNN-GRU[J].Proceedings of the Institution of Mechanical Engineers,Part M:Journal of Engineering for the Maritime Environment,2024,238(4):809-823.

[18] KANAI S,ADACHI S,IWESMURA S,et al.Training of gated recurrent units constrained to locally stable to prevent the gradient exploding[J].D-Abstracts of IEICE TRANSACTIONS on Information and Systems (Japanese Edition),2019,J102-D(8):530-541.

[19] XU M J,LI X,LI Q W,et al.LNBi-GRU model for coal price prediction and pattern recognition analysis[J].Applied Energy,2024,365:123302.

[20] KANG X H,ZHAO Z T.Optimal design of ceramic form combining stable diffusion model and GRU-Attention[J].Advanced Engineering Informatics,2025,64:103062.

[21] TIAN R,LÜ Z,FAN Y,et al.Qualitative classification of waste garments for textile recycling based on machine vision and attention mechanisms[J].Waste Management,2024,183:74-86.

[22] 中华人民共和国国家质量监督检验检疫总局.煤和岩石物理力学性质测定方法第 9 部分:煤和岩石三轴强度和变形参数测定方法:GB/T 23561.9—2009[S].General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China.Methods for determining the physical and mechanical properties of coal and rock.Part 9:methods for determining the triaxial strength and deformation parameters of coal and rock:GB/T 23561.9—2009[S].

基本信息:

DOI:10.13637/j.issn.1009-6094.2025.0435

中图分类号:TP18;TD32

引用信息:

[1]陈蓥,史明哲,张子凯,等.融合CNN-GRU-Attention的含水砂岩蠕变预测方法研究[J].安全与环境学报,2025,25(12):4566-4576.DOI:10.13637/j.issn.1009-6094.2025.0435.

基金信息:

国家自然科学基金项目(51874164,52174185); 辽宁省教育厅基本科研项目(LJ212410147016)

检 索 高级检索